Role of Nitrogen in Particulate Matter and Ozone Formation

Mary Anne Carroll University of Michigan

CASA Science Symposium on Nitrogen 28 September 2006 Lake Louise, Alberta, Canada THE CO/VOC + NOx O_3 -FORMATION THEORY

- VOCs (Volatile Organic Compounds):
 - Sources:
 - biogenic (natural: e.g., trees)
 - anthropogenic (human activities: e.g., combustion
 - » stationary (power plants)
 - » mobile (automobiles)
 - CO (carbon monoxide):
 - Sources:
 - primarily anthropogenic combustion
 - » stationary (power plants)
 - » mobile (automobiles)

The CO/VOC + NOx O_3 -Formation Theory, cont'd:

- NOx (NO + NO₂):
 - Sources:
 - natural: lightning, biomass burning, soil microbial processes
 - » **INSIGNIFICANT** with respect to pollutionlevels of ozone
 - anthropogenic (human activities: e.g., combustion
 - » stationary (power plants)
 - » mobile (automobiles)

The CO/VOC + NOx O_3 -Formation Theory, cont'd:

	O ₃	+	h ${f v}$	\rightarrow	O ₂	+	O(¹ D)			
	O(1D)	+	Μ	\rightarrow	O(³ P)	+	Μ			
O(³ P)	+ 0 ₂	+	Μ	\rightarrow	O ₃	+	Μ			
	$\mathbf{M} = \mathbf{N}_2 \text{ or } \mathbf{O}_2$									
	O ₃	+	NO	\rightarrow	NO ₂	+	O ₂			
	NO ₂	+	h ${f v}$	\rightarrow	NO	+	0(³ P)			

BUT!! When CO and VOCs are oxidized, HO₂ and RO₂ (highly reactive "radicals") are formed and can ALSO react with NO :

	HO ₂	+	NO	\rightarrow	NO ₂	+	OH
	RO ₂	+	NO	\rightarrow	NO ₂	+	OR
	NO ₂	+	h ${f v}$	\rightarrow	NO	+	O(³ P)
O(³ P)	+ 0 ₂	+	Μ	\rightarrow	O ₃	+	Μ

So, ozone is formed when carbon monoxide and reactive hydrocarbons (VOCs) are oxidized in the presence of NO.

NOx and O_3 Formation

after Harrison et al. 2000

Evidence of Global Change

- Changes in atmospheric composition on local, regional, and global scales
 - $-O_3$ at the surface has increased significantly:
 - Factor of 2 (global average)
 - Factor of 5 10 in Northern Hemisphere
- Hemispheric increases in tropospheric photochemical oxidants
 - Many areas that were previously regions of net O₃ destruction have become regions of net O₃ production (e.g. Atlantic ocean marine boundary layer). We understand this to be due to increasing NOx emissions.

A contour map of O_3 mixing ratios that occur for different initial concentrations of NO_x and VOC at a fixed temperature and irradiation level

If your atmospheric conditions are similar to "1", you could reduce O_3 by reducing *either* NO_x or VOC. If you are at "3", reducing NO_x will actually *increase* O_3 , but reducing VOC will reduce O_3 . If you are at "2", reducing VOC will have no effect on O_3 , but reducing NO_x will reduce O_3 .

"2": Reduce NO_x, get a big drop in O₃. Reduce VOC, little change in O₃. NO_x Limited! Rural "3": Reduce NO_x, get an increase(!) in O₃. Reduce VOC, get decrease in O₃. VOC Limited! Urban Credit due to unknown source!

Ozone Mixing Ratios vs. NO_x and VOC Emissions Air pollution model calculation for a typical urban airshed

Jacob

ALTHOUGH THE $O_3 \frac{\text{PRODUCTION}}{\text{RATE}} \text{ IS } \sim [NO_x],$ THE <u>TOTAL</u> $O_3 \text{ PRODUCED}$ IS HYDROCARBON-DEPENDENT AND $[O_3] = f(E_{NOx})$ IS STRONGLY NONLINEAR

Define ozone production efficiency (OPE) as the total number of O_3 molecules produced per unit NO_x emitted (or oxidized!).

Assuming NO_x steady state, efficient HO_x cycling, and loss of NO_2 by reaction with OH:

OPE =
$$\frac{P(O_3)}{L(NO_x)} = \frac{2k_7[HO_2][NO]}{k_9[NO_2][OH]} = \frac{2k_4[RH]}{k_9[NO_2]}$$

 $OPE \ge as NO_x \land \Leftrightarrow strong nonlinearity$

Jacob

Ozone and Reactive Nitrogen Summer 1998

Background Ozone and OPE **Summer 1998**

Background O₃ ~ 25 ppbv in northerly flow ~ 40 ppbv in southerly flow

OPE

- ~ 22 in no. flow
- \sim 14 in so. flow

 $O_3 = 55 + 8.7 \text{*NO}_7$ (r²=0.61) for southerly data filtered for NOx/NOy < 0.25

Role in PM Formation?

... as previously noted,

 $NH_{3 (g)} + HNO_{3 (g)} \longleftrightarrow NH_{4}NO_{3 (s, aq)}$ $NH_{3 (g)} + H_{2}SO_{4 (s, aq)} \longleftrightarrow (NH_{4})_{2}SO_{4 (s, aq)}$ or $NH_{4}HSO_{4}$ or $(NH_{4})_{3}H(SO_{4})_{2}$

Additional routes to nitrate aerosol formation:

 $\operatorname{NaCl}_{(s)} + 2\operatorname{NO}_{2(g)} \longrightarrow \operatorname{CINO}_{(g)} + \operatorname{NaNO}_{3(s)}$ $\operatorname{NaCl}_{(s)} + \operatorname{HNO}_{3(g)} \longrightarrow \operatorname{HCl}_{(g)} + \operatorname{NaNO}_{3(s)}$

Overview of Roles Played by NH₃ and NOx the Formation of Fine Particles (PM 2.5)

in

Ammonia Contribution to Fine Particles, Panorama Pathways 2004

Role of NOx and NH_3 in the Formation of Fine Particles

Ammonia Contribution to Fine Particles, Panorama Pathways 2004, adapted from Pandis 2003

The Sulfuric Acid / Ammonia System

Ammonia Contribution to Fine Particles, Panorama Pathways 2004

Relationship between NH_3 , NOx, and $SO_4^{=}$ in PM Formation

Ammonia Contribution to Fine Particles, Panorama Pathways 2004, adapted from Pandis 2003

Figure 3.16. Chemical links between the ozone and PM formation processes. The major precursors are shown in green squares. The VOC can be gaseous (always in the gas phase), non-volatile (always in the condensed phase), and semivolatile ((partitioned between the gas and condensed phases (adapted from MSC, 2001)).

Chapter 3, Atmosphere Aerosol Processes, Particulate Matter Science for Policy Makers: A NARSTO Assessment, 2003

COMPOSITION OF PM2.5 (EPA/NARSTO PM ASSESSMENT, 2003)

