Agricultural Nitrogen Control Practices and Options

Brent Auvermann Texas A&M University System

Amarillo, TX

My Assignment

- State of the art for agricultural N emissions
- N emissions control practices
 Costs of control practices and technologies
- All of that in 30 minutes

Summary

- Humans mobilize ~50% more Nr than natural terrestrial ecosystems.
 - Food production accounts for 75%
- Nr is widely dispersed
 - Atmospheric Nr emissions have increased 3-fold since 1860; NH₃ twice as important as NO_x
 - Nr is accumulating.

Next Questions

 What are the consequences of Nr emissions on the atmosphere and ecosystems?

 What should/can society do to slow or reverse Nr accumulation?

James Galloway, "Human Alteration of the Nitrogen Cycle: Causes and Consequences," John Airy Symposium, Kansas City, MO, January 2006

James Galloway, "Human Alteration of the Nitrogen Cycle: Causes and Consequences," John Airy Symposium, Kansas City, MO, January 2006

Critical Control Points for Agricultural RNG Emissions

Crop Production

- Farm N balances
- Inorganic N fertilizers
- Manure application
- Biomass decomposition

 Livestock Production

- Farm N balances
- Live-animal emissions
- Open-lot corral surfaces
- Ventilation exhausts
- Liquid manure and wastewater storages
- Composting facilities

James Galloway, "Human Alteration of the Nitrogen Cycle: Causes and Consequences," John Airy Symposium, Kansas City, MO, January 2006

The changing livestock sector

Increasing demand and production

Past and Projected Growth in Meat Production (million tons)

James Galloway, "Human Alteration of the Nitrogen Cycle: Causes and Consequences," John Airy Symposium, Kansas City, MO, January 2006 Air Quality: Dust, Odor and Gases from Open-Lot Animal-Feeding Operations in the Southern Great Plains

Participants

Texas A&M Ag Program West Texas A&M University Kansas State University USDA Ag Research Service

Major Objectives

- 1. Emissions Processes
- 2. Abatement Measures
 - 3. Emission Factors
 - 4. Health Effects
- 5. Technology Transfer

= Concentration of feedyards in U.S.

25% of nations beef **Fed-Cattle Industry in the US**

Courtesy J. Sweeten (2006)

The Fed Cattle Industry in the United States

- The trend to fewer, larger feedyards continues
- Nearly 60% of cattle are marketed from about 200 feedyards
 - The number of cattle marketed from yards with fewer than 1,000 head has declined to under 3 million
 - Average capacity in Texas High Plains: 40,000+

Open-Lot Systems

- Beef feedyards
 - Animal spacing 75-250 ft²/hd
 - Excreted N 90% of N consumed in feed
 (Bierman et al., 1996)
- Open-lot dairies
 - Animal spacing 200-400+ ft²/hd
 - Excreted N 70% of N consumed in feed
 (Van Horn et al., 1996)

Fate of Excreted N in Open-Lot Systems

- Collected in solid manure
 - Spread
 - Stored (stockpiles, mounds, other)
 - Composted and spread
- Remains on corral surface
 - Stable if it remains dry
 - Runs off into holding pond
- Volatilized as NH₃(g) directly
 Increases with wet/dry cycling

NH₃ Loss: Open Lots vs. Ponds

• Open lots

- Large area source, 2-9 acres per 1,000 head capacity
- Variable emissions driven by wet/dry cycles, short-term temperature fluctuations
- Lagoons and holding ponds
 - Much smaller area source, 1-10 acres *total*
 - Seasonal temperature fluctuations
 - Continuous releases; f(temp, wind speed, RH)

N Transformations on FY Surfaces

Courtesy N. A. Cole and R. Todd (2006)

NH₃ Concentrations Near Alberta Feedyards

- Alberta Environment (2000)
 - One-hour average concentrations
 - Up to ~800 µg m⁻³ NH₃-N
- McGinn *et al*. (2003)
 - Daily averages of 5-minute concentrations
 - Two highest values on days of lowest wind speeds
 - Up to ~1,500 μ g m⁻³ NH₃-N

- NH₃ presents steep challenges because of its:
 - High reactivity with anions and surfaces
 - High aqueous solubility
 - Deposition
 - Condensation
 - Kinetically limited redox pathways w/NO_x species
 - Numerous pools and pathways in real systems
 - Sensitivity to pH
- Accounting for all of those factors in a single measurement scheme is complicated
- Uncertainty analysis assumes all sources of bias (systematic error) have been eliminated

NH₃ Flux Estimates by 5 Methods

Courtesy N. A. Cole and R. Todd (2006)

©2004 Heartlight, Inc. http://www.heartlight.org

The Holy Grail

A range of emission factors that expresses the most probable, scientifically justifiable, annualized, NH₃ emission flux from feedyards and dairies as a function of herd size, stocking density or other appropriate measure of capacity or throughput

Where We Are Today

- There are dozens of different ways of estimating NH₃ flux from an open-lot AFO
- Today, we consider results from several of them
- Getting at the *true flux* requires a convergence of results from independent methods, but even that's not enough

Available Methods

- Envelope approaches
 - Mass balance
 - Nutrient ratio (N:P)
- Direct approaches
 - Surface isolation flux chambers
 - Wind tunnels
 - Eddy covariance

Dispersion/box models

- Gaussian (ISCST, AERMOD)
- Lagrangian stochastic backward, forward
- Integrated horizontal flux (IHF)
- Flux-gradient

– Box

Mass Balance Equation for Open-Lot AFOs

Feedyard N Balance

Courtesy N. A. Cole and R. Todd (2006)

Daily Volatile N Losses

Courtesy N. A. Cole and R. Todd (2006)

Method	Beef	Dairy	Comments
	% of Fed N		
N Balance	44	<80	Uncertainty analysis nearly complete (beef)
N:P Ratio	48		Varies from 20-51% depending on source material (fresh manure, pen surface, compost)
Flux Chamber	18	3 (OL) - 5 (FS)	Herds are ~15% dry cows, ~85% lactating; excreted N is 79% of fed N
Flux- Gradient	43		Uncertainty analysis underway
bLS/OPL	41		Uses open-path lasers to measure N
Box Model	31-55		

02004 Heartlight, Inc. http://www.heartlight.org

Urine-Spot NH₃ Emissions

- The vast majority of NH₃ emissions comes from urine spots
- Surface chemistry changes rapidly
- Accurate measurements of NH₃ (and CH₄, NO_x) flux are needed to develop appropriate models and make valid treatment comparisons

Courtesy N. A. Cole and R. Todd (2006)

Open-Lot NH₃ Flux: Drivers

- Wet/dry cycles
- Low C:N ratio of manure
- Favorable pH (>7.0)
- Enzyme-mediated hydrolysis of urea
- NH₄⁺ highly soluble, mobile

Volatilization Rate vs. Time

Volatilization Rate vs. Time

Elapsed Time (hrs)

4.5

Volatilization Rate vs. Time

Continuous Manure Excretion; Periodic Rainfall Events

Feedyard N Balance

Courtesy N. A. Cole and R. Todd (2006)

Reducing Open-Lot NH₃ Flux

- Wet/dry cycles: *Stop H*₂*O applications, improve corral drainage*
- Low C:N ratio of manure: Add carbonaceous bedding, mulch or liquid source of organic C (e. g., humates)
- Favorable pH (>7.0): *Alum or other*
- Enzyme-mediated hydrolysis of urea: *Urease inhibitors*
- NH₄⁺ highly soluble, mobile: *Add strong adsorption sites (e. g., clinoptilite)*

Effects of Phase Feeding on N Volatilization Losses

Courtesy N. A. Cole and R. Todd (2006)

Surface Amendments

- Shi et al. (2001) *in vitro* evaluations of simulated feedyard surfaces
 - $Al_2(SO_4)_3$ lowers manure pH
 - NBPT suppression of urea hydrolysis to NH_4^+
 - $CaCl_2$ cation exchange
 - Humate (black and brown) increase C:N ratio
- Measured cumulative loss over 21 days
- Incremental benefit computed as equivalent N fertilizer maintained in manure; rises and falls with NG/anhydrous prices
- Does not factor in the presence of carbonaceous bedding *as is common in Alberta feedyards*

Results of Shi et al. (2001)

- Alum: 92% reduction at 4,500 kg/ha; B/C=0.17
- CaCl2: 71% reduction at 4,500 kg/ha; B/C=0.16
- *NBPT*: 65% reduction at 1 kg/ha; *B*/*C*=1.75
- Humates: 65% reduction at 9,000 kg/ha; B/C=0.04

Surface Amendments

- Replicating NBPT success outside the laboratory has been unsuccessful so far
- Keeping N as urea in manure surface would increase N pool and require increasing application rates over time
- Urea in solid manure can reduce NO_x emissions from coal-fired power plants during reburn

Reducing Open-Lot NH₃ Losses

- Wet/dry cycles: *Stop H*₂*O applications, improve corral drainage*
- Low C:N ratio of manure: Add carbonaceous bedding, liquid C source (humates; dilute beet extract?) or mulch
- Favorable pH (>7.0): *Alum or other*
- Enzyme-mediated hydrolysis of urea: *Urease inhibitors*
- NH₄⁺ highly soluble, mobile: *Add strong adsorption sites (e. g., clinoptilite)*
- Extensive area source: Manure harvesting

©2004 Heartlight, Inc. http://www.heartlight.org

A Reminder to Alberta's Policymakers

- We can design innovative stuff...
- ... but can we
 afford it at current
 levels of energy
 use?
- What about at *future* levels?

