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My Assignment

State of the art for agricultural N
emissions

N emissions control practices

Costs of control practices and
technologies

All of that in 30 minutes



Summary Next (Juestions
# Humans mobilize ~50% more *
INT than natural terresinal
ecosystems.

What are the consequences of Nr
emussions on the atmosphere and

ol _ ecosystems?
— Fpod production accounis for
75%
& INr1s widely dispersed
— Aimospheric Nr emizsions +« What should'can society do to

have increased 3-fold since
1860; NH, rwice as importans
as NO_

— Nr iz accumulating.

-

slow or reverse INr accunmlation?

James Galloway, “Human Alteration of the Nitrogen Cycle: Causes and Consequences,”
John Airy Symposium, Kansas City, MO, January 2006
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Critical Control Points for Agricultural RNG
Emissions

e Crop Production
— Farm N balances
— Inorganic N fertilizers
— Manure application

— Biomass
decomposition

e Livestock
Production

Farm N balances
Live-animal emissions

Open-lot corral
surfaces

Ventilation exhausts

Liquid manure and
wastewater storages

Composting facilities
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The changing livestock sector

Increasing demand and production

Past and Projected Growth in Meat Production
(millign tons)

i

Developing C. Developed C.

Hemming Steinfeld, LEAD Project, FAD
Livestock, Eoviromment and Developinant

James Galloway, “Human Alteration of the Nitrogen Cycle: Causes and Consequences,”
John Airy Symposium, Kansas City, MO, January 2006




Air Quality: Dust, Odor and Gases from
Open-Lot Animal-Feeding Operations
In the Southern Great Plains

Participants Major Objectives
Texas A&M Ag Program 1. Emissions Processes
West Texas A&M 2. Abatement Measures
University 3. Emission Factors

Kansas State University 4. Health Effects
USDA Ag Research Service 5. Technology Transfer
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Open-Lot System

;-.w

o Beef feedyards

— Animal spacing 75-
250 ft?/hd

— Excreted N 90% of N
consumed in feed
(Bierman et al., 1996)

e QOpen-lot dairies
— Animal spacing 200-
400+ ft?/hd
— Excreted N 70% of N
consumed in feed

(Van Horn et al.,
1996)




Fate of Excreted N in Open-Lot
Systems

e Collected in solid manure
— Spread
— Stored (stockpiles, mounds, other)
— Composted and spread

* Remains on corral surface
— Stable If it remains dry
— Runs off into holding pond

» Volatilized as NH;(g) directly
— Increases with wet/dry cycling



NH; Loss: Open Lots vs. Ponds

e Open lots

— Large area source, 2-9 acres per 1,000 head
capacity

— Variable emissions driven by wet/dry cycles,
short-term temperature fluctuations

« Lagoons and holding ponds

— Much smaller area source, 1-10 acres total

— Seasonal temperature fluctuations

— Continuous releases; f(temp, wind speed, RH)



N Transformations on FY Surfaces

Solar
radiation

Kills pathogens

Soil surface

NH, Volatilization

Organic
matter N
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NO, :
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N Fluctuates seasonally

Ground water or
saturated zone

Courtesy N. A. Cole and R. Todd (2006)
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NH, Concentrations Near Alberta
Feedyards

» Alberta Environment (2000)
— One-hour average concentrations
— Up to ~800 pug m= NH4;-N
 McGinn et al. (2003)

— Dally averages of 5-minute concentrations

— Two highest values on days of lowest wind
speeds

— Up to ~1,500 pg m= NH,-N



* NH; presents steep challenges because of its:
— High reactivity with anions and surfaces
— High aqueous solubility
» Deposition
» Condensation
— Kinetically limited redox pathways w/NO, species

— Numerous pools and pathways in real systems
— Sensitivity to pH

e Accounting for all of those factors in a single
measurement scheme is complicated

« Uncertainty analysis assumes all sources of bias
(systematic error) have been eliminated



NH; Flux Estimates by 5
Methods

Courtesy N. A. Cole and R.
Todd (2006)



The Holy Grall

A range of emission factors that
expresses the most probable,
scientifically justifiable, annualized,
NH,; emission flux from feedyards and
dairies as a function of herd size,
stocking density or other appropriate
measure of capacity or throughput



Where We Are Today

e There are dozens of different ways of
estimating NH; flux from an open-lot
AFO

e Today, we consider results from several
of them

o (Getting at the true flux requires a
convergence of results from independent
methods, but even that’s not enough



Avallable Methods

e Envelope

approaches

— Mass balance
— Nutrient ratio (N:P)

o Direct approaches

— Surface isolation flux
chambers

— Wind tunnels
— Eddy covariance

 Dispersion/box
models

Gaussian (ISCST,
AERMOD)

Lagrangian stochastic —
backward, forward

Integrated horizontal
flux (IHF)

Flux-gradient
Box



Mass Balance Equation
for Open-Lot AFOs

EXCTr. Total N Intake
Coef. Feed Water
CoooM M, C
M, =1.21(1—7RN){[ CP6.25DMI }{ W106 = }}{mumw + (1= Zeon ey §

Total N Excretion Partitioning and

Volatilization
Coefficients




Feedyard N Balance

Feed in  Cattle gain Feces Urine NH3

Courtesy N. A. Cole and R. Todd (2006)
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Courtesy N. A. Cole and R. Todd (2006)




Method | Beef | Dairy Comments
% of Fed N
N Balance 44 <80 Uncertainty analysis nearly complete
(beef)
Varies from 20-51% depending on source
N:P Ratio 48 material (fresh manure, pen surface,
compost)
3 (OL :
Flux 18 (_ ) Herds are ~15% dry cows, ~85% lactating;
Chamber excreted N is 79% of fed N
S(E))
Flux- : .
Gradient 43 Uncertainty analysis underway
bLS/OPL 41 Uses open-path lasers to measure N
Box Model | 31-55







Urine-Spot NH, Emissions

 The vast majority of NH; emissions
comes from urine spots

« Surface chemistry changes rapidly

» Accurate measurements of NH; (and CH,,
NO,) flux are needed to develop
appropriate models and make valid
treatment comparisons

Courtesy N. A. Cole and R. Todd (2006)



Open-Lot NH, Flux: Drivers

Wet/dry cycles

Low C:N ratio of manure

Favorable pH (>7.0)
Enzyme-mediated hydrolysis of urea
NH,* highly soluble, mobile
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Courtesy N. A. Cole and R. Todd (2006)



Reducing Open-Lot NH, Flux

Wet/dry cycles: Stop H,O applications, improve
corral drainage

Low C:N ratio of manure: Add carbonaceous
bedding, mulch or liquid source of organic C (e.
g., humates)

Favorable pH (>7.0): Alum or other
Enzyme-mediated hydrolysis of urea: Urease
Inhibitors

NH,* highly soluble, mobile: Add strong
adsorption sites (e. g., clinoptilite)



Effects of Phase Feeding on
N Volatilization Losses

AU =5

18.5+

16.5-
14,54
12.51
10.5-
8.5
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2.5

64.6f

61.

kg / head

58. 71

11.5 13 11>10 13>11
Crude Protein as % of Dry Matter Intake

Courtesy N. A. Cole and R. Todd (2006)




Surface Amendments

Shi et al. (2001) — in vitro evaluations of
simulated feedyard surfaces
— Al,(SO,); — lowers manure pH
— NBPT — suppression of urea hydrolysis to NH,*
— CacCl, - cation exchange
— Humate (black and brown) — increase C:N ratio

Measured cumulative loss over 21 days

Incremental benefit computed as equivalent N
fertilizer maintained in manure; rises and falls
with NG/anhydrous prices

Does not factor in the presence of carbonaceous
bedding as is common in Alberta feedyards



Results of Shi et al. (2001)

Alum: 92% reduction at 4,500 kg/ha; B/C=0.17
CaCl2: 71% reduction at 4,500 kg/ha; B/C=0.16
NBPT: 65% reduction at 1 kg/ha; B/C=1.75

Humates: 65% reduction at 9,000 kg/ha;
B/C=0.04



Surface Amendments

* Replicating NBPT success outside the
laboratory has been unsuccessful so far

e Keeping N as urea in manure surface
would increase N pool and require
Increasing application rates over time

 Urea in solid manure can reduce NO,
emissions from coal-fired power plants
during reburn



Reducing Open-Lot NH, Losses

Wet/dry cycles: Stop H,O applications, improve
corral drainage

Low C:N ratio of manure: Add carbonaceous
bedding, liquid C source (humates; dilute beet
extract?) or mulch

Favorable pH (>7.0): Alum or other
Enzyme-mediated hydrolysis of urea: Urease
Inhibitors

NH,* highly soluble, mobile: Add strong
adsorption sites (e. g., clinoptilite)

Extensive area source: Manure harvesting
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A Reminder to Alberta’s Policymakers

* \We can design innovative
Stuff...

e ... butcan we
afford it at current
levels of energy
use?

 \What about at
future levels?
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